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EULER POTENTIALS AND GEOMAGNETIC 

DRIFT SHELLS 

by 
David Stern 

Laboratory for Theoretical Studies 

ABSTRACT 

The equation of drift shells, traced by the guiding center motion of charged 

particles moving in a magnetic field, is discussed in terms of Euler potentials 

u and P. Particular attention is given to fields deviating to a limited extent from 

a dipole configuration, for which it is shown that the result is related to the 

drift-shell parameter L, with an added "shell splitting function" GI. A pertur- 

bation method approximately deriving G, is described: it leads to results simi- 

lar  to those found by Pennington in his perturbation derivation of drift shells. 

The use by Pennington of a divergent expansion and the I = 0 limit of the equa- 

tions obtained are also discussed. 
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EULER POTENTIALS AND GEOMAGNETIC 

DRIFT SHELLS 

INTRODUCTION 

I A drift shell (sometames termec "magnetic shell") is defined as the surface 

traced by the guiding center of a magnetically confined charged particle, a s  de- 

rived from the guiding center approximation of its motion. By this approxima- 

tion, a particle generally follows magnetic field lines, and therefore such lines 

will be tangential to drift shells. 

Magnetic field lines may be compactly described by the use of Euler poten- 

tials u and /? 

- B = vu x op 

and therefore it may be surmised that drift shells are also best expressed by 

such potentials. It is the purpose of this work to approximately derive this re- 

lationship for drift shells in the geomagnetic field. For that field, approximate 

Euler potentials may be derived by perturbation (Stern, 1967; the notation and 

results of that work will be freely used here) from the spherical harmonic ex- 

pansion of the geomagnetic scalar potential y. A similar derivation allowing for 

external sources of the geomagnetic field is also possible; its various proper- 

ties, including the form of drift shells in that case, will be discussed in a sepa- 

rate article. 
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With one exception, previous derivations of drift shells in the geomagnetic 

field have involved extensive numerical calculation of line integrals, by means 

of large digital computers. The exception is the perturbation derivation by 

R. Pennington (1967; performed in 1960 for the Argus experiment), of which 

unfortunately only a short summary (Pennington, 1961) has appeared in the 

periodical literature. The results obtained here are fully equivalent to those 

of Pennington; .their derivation, however, is through the use of Euler potentials, 

which represents the more natural approach to problems of this sort. Certain 

mathematical aspects, not treated by Pennington, are also clarified. 

FIRST-ORDER EULER POTENTIALS 

Let the geomagnetic field be given through its scalar potential y 

and let y be split (assuming tilted dipole coordinates) into a dipole component 

yo and a sum of higher harmonics y l ,  assumed to be of the order of E y o ,  with 

E << 1: 
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In the summation of y1 , the n = 1, rn = 1 terms are absent, because tilted- 

dipole coordinates are used; some of the terms there are actually small enough 

to be ignored at this level and could be relegated to a second-order component 

Y I 2  (Stern, 1967), but this point will not be stressed. We denote by a and ,B the 

first-order Euler potentials, as derived from the dipole potentials by first order 

perturbation (Stern, 1967) 

- a - a. + a ,  

P = Po + p, 

with 

a. = a gy ( a / r )  s i n 2  e (5) 

m = n  
- al - a L ( a / r ) .  s i n 2 n  e [V:(O) t e:] { g: cos rn rp + h: s i n  m cp 

n = 2  m = O  

(6) 

- ,80 - a (7) 



Here v;(O) and t; (8 )  are trigonometrical polynomials introduced by Pennington, 

available in tabulated form (Pennington, 1961; Stern, 1965, 1967), and 6; are 

additive constants (Stern, 1967), chosen in such a manner that the analogous 

additive constants of t;(e) all vanish. 

THE DRIFT SHELL EQUATION 

Since field lines are tangential to drift shells, the equation of any such shell 

has the form 

f ( a ,  P> = 0 (9) 

For a given particle, the associated drift shell and therefore also the func- 

tion f (a$) depends on the initial conditions of the particle's motion, e.g., its 

position and momentum at some given instant, o r  on suitable independent func- 

tions of these. By the adiabatic theory of guiding center motion it may be shown 

that in static cases no more than two such functions determine the shell - the 

magnetic moment of the particle and i ts  longitudinal invariant. These, in turn, 

are functions only of the particle's mass and energy and of two quantities asso- 

ciated with the field, the "mirroring field intensity" Bm at which the particle is 

reflected in its motion along field lines and the integral 

I =  I (1 - BBm)' ds 
B<B, 
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evaluated along a field line. It is the property of a drift shell (by which, indeed, 

it is defined) that the same value of I is obtained no matter which of the field 

lines tangential to it is chosen for integration. The entire family of shells in the 

geomagnetic field may thus be characterised by an equation of the form 

o r  

Since the geomagnetic field may be regaded as a perturbed dipole field, one may 

expect that its drift shells reduce to those of the dipole field as all higher har- 

monics tend to zero. In a dipole field the variable p ,  which is then given by 

Eq. (7), is absent from Eq. (11) due to the field's axial symmetry, so this equa- 

tion may be written (subscript zero referring to the zeroth order, i.e., the dipole 

case) 

(13) 
- 

a0 - Go ( 1 7  B,) 

Inverting, one gets 

1 = Io b o ,  Bm) 

The function Io, defined here for later use, is none other than the integral of 

Eq. ( lo) ,  expressed in (uo, 8, Bm) variables for the dipole field (see Eqs. 23-25). 

If one allows the perturbation to shrink to zero, Eq. (12) reduces to (13); there- 

fore, within first-order accuracy, Eq. (12) has the form 
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The function G; appearing here is of the first order, and in evaluating it one 

may use zero-order relationships. Now, of all variables entering the last equa- 

tion, the integral I is the most difficult to handle; it is therefore advantageous 

to eliminate it from G; by use of (14), even though this means reintroducing a 

to the right-hand side (although Eq. (14) is only correct to zeroth order, such a 

substitution is permissible in a first-order correction term). In the next section 

we shall discuss  the deeper significance of this elimination - namely, that it 

allows labeling a shell by two parameters, the effects of which are of different 

orders and can be considered separately. We shall also replace u and ,8 in G; 

by their zero-order parts a. and Po ; for practical applications, when we want 

the equation of a shell in ( rr 0 ,  cp) variables rather than in terms of u and ,8, 

one may substitute for them from Eqs. (5) and (7). The function obtained after 

all these changes will be denoted by unprimed GI, and the equation becomes 

THE DRIFT-SHELL PARAMETER L 

The preceding derivation bears a strong relation to the parameter L ,  intro- 

duced by McIlwain (1961) for labeling drift shells. There has existed some mis- 

understanding concerning this parameter, and in what follows we shall try to re- 

solve it, at the same time defining the relationship between L and the present 

c a1 cul ation. 
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Much of the above misunderstanding can be traced to the fact that there 

exist two different functions which are commonly denoted by L. On the one hand, 

there is the function L (  I,B,) of the adiabatic invariants, which is used to label 

drift shells; on the other hand there is also a function of position 

denoted here by L ( r ,  8, cp), which is obtained, for a given position in space, by 

substituting in L (I,B,) the values of I and B, appropriate to particles mirroring 

at a point"), 

at that point. The purpose of this section is to show that 

(1) L (I ,B,) is a function naturally arising when classifying drift shells in a 

dipole field or in a perturbed dipole field, and 

(2) L ( r ,  8,cp) is an approximation to a certain choice of the Euler potential 

a, obtained by averaging Eq. (16) over B,. 

To demonstrate the first point,consider again the labeling of drift shells: as 

was noted, such labeling may be accomplished by means of the two parameters I 

and B,. This, however, is not the only possible choice, and two independent 

functions of I and B, may serve equally well. 

In particular, i f  the field is that of a magnetic dipole, it appears advantageous 

to choose as one of the labeling parameters the function Go ( I ,  BJ, retaining, say 

B,,, for the other one. By Eq. (13) the shape of the magnetic drift shell then de- 

pends only on - characterizing parameter, and the entire collection of shells 

reduces to a one-parameter family, rather than a two-parameter one. 
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There still remains some freedom of choice left - instead of labeling with 

Go( I, Bm), one may use some function of it. In particular, one may introduce the 

function 

L ( I ,  B,) = a g!/Go(I, B,) 

so that Eq. (13) for a shell in a dipole field takes the form 

By Eq. (5), a dipole shell crosses the equatorial plane at a fixed distance, and it 

can be seen from the last equation that the constant L associated with such a 

shell has the useful intuitive property of equaling this distance, as measured in 

earth radii. It is therefore to be identified with the function L (I, B,) introduced 

by McIlwain (1961). 

Of more interest is the case in which the field is not strictly a dipole field 

but has a perturbation added to it. To the first order the equation of a drift shell 

is then given by (16), and replacing there Go by L we get 

- 
a - a g!/L + G l ( a o l  Po,  €3,) (1 9) 

In this case the equation of a shell depends on both L and B,. Since, how- 

ever, this is a perturbed version of Eq. (18), the dependence is unequal: L ap- 

pears in a zero-order term, whereas B, enters only through the first-order 

correction C,. 

ing the same value of L, and it therefore appears appropriate to call it the 

The function C, represents the variation between shells shar- 
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(first-order) shell splitting function. Much of the present work is devoted to its 

explicit derivation. 

In this connection it should also be realized that no simple expression is 

available for either Go (I, B,) o r  L (I, B,). The only way to derive these func- 

tions is through the inverse function Io (ao, B,), obtained by extracting I from 

Go (I, B,) and shown in Eq. (14); this function is explicitely defined in equations 

(23)-(25) and is by no means a simple one. Because of this difficulty, an analyti- 

cal approximation to L (I, B,), introduced by McIlwain (1961, 1966), is nowadays 

generally used. 

Turning now to the second definition of L, by calculating "L at a point" one 

is actually deriving a function which to first order can be approximated by 

L ( r ,  8 ,  'PI = + (a, P , B )  = a g ! / [ a  - G, ( a ,  P, "13 . (20) 

On the right-hand side, a, /I and B are all to be evaluated at the point ( r ,  8, cp). 

Since B enters only through a first-order correction term, the dependence on it 

is weak and may be averaged out 

.-u 

( r s  '3 = < P, '))aver. o v e r  B = x /I) ' 

Since x is function of u and P only, it may be introduced as an Euler poten- 

tial to replace a (Stern, 1967). In fact, if the correction term G, is altogether 

ignored, we find that L ( r ,  0,g) closely approximates (a $/a), with a defined as 
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in Eq. (6). One may even improve such an approximation by an appropriate 

choice of the constants 

discussed. 

appearing in that equation, but this point will not be 

In summary, then, the use of L (I, B,) for labeling drift shells naturally 

enters into the present treatment through the function Go, and is further aug- 

mented by the addition of a "shell-splitting" correction term G I .  If the pertur- 

bation is mild - as is the case near earth - the correction term is small and it 

is a good approximation to assume that the same value of L (I, Bm) characterises 

all particles attached to a given field line. This value can then be derived as 

L ( r ,  0 ,  9 )  for some arbitrary point on the line - e .g., the point at which it meets 

the earth's surface, which is the choice used by most experimenters. 

On the other hand, the use of L ( r ,  0 , q  ) as an Euler potential for labeling 

geomagnetic field lines (as has been practiced by many workers in the field) is 

not particularly encouraged. As has been shown, it is not entirely accurate, and 

although the inaccuracy (for the internal magnetosphere) is no greater than that 

introduced by the first-order approximation of Eq. (6), it is a basic one and is 

independent of mathematical precision. Moreover, the Euler potentials of a 

field depend only on its sources and structure, and it should not be necessary 

to involve adiabatic invariants of particles trapped in it for their derivation. 
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THE FIRST-ORDER SHELL SPLITTING FUNCTION 

Zn order to derive an approximate expression for  G, , Eq. (16) is rewritten 

(21) 
a - C, - - C,(I,B,).  

This resembles (13), except that a. is replaced by (a - G,). We therefore 

get for the perturbed field, in analogy with (14) 

I = Io(u  - G,,Bm) 

No first-order e r rors  are committed by replacing 2 Io ( a ,  B,)/ 2a  by 

a I o ( a o ,  B,) /aa0, so that one finds, to first order 

To evaluate the denominator, one has to differentiate 

with 



Using 

(26) 

(27) 

- aBo/aao - 3 B0/ao 

- 
- X o / a o  - a x, 1 a a, 

and denoting by em (“mirroring e’!) the value of e corresponding to Bm in a 

dipole field, one gets 

a I o / a a o  - - - a, -’ 1: t Bo/2Bm) (1 - Bo/Bm)-” X ,  d e  
Jr- e,,, 

- (a2gy/2a:) ( 2  + Bo/Bm) (1 - Bo/Bm)-” s in  e (1 + 3 cos2@)“ dB . 

The integral derived here is the same as the integral K, defined by Penning- 

ton (1961, Eq. 11). It has an integrable singularity at the limits of integration. 

EVALUATION OF THE NUMERATOR 

The numerator in Eq. (22) consists of the first-order difference between 

two integrals. The first of these is 
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where B = Ivy1 is the magnitude of the perturbed field, integration is performed 

with constant (perturbed) a and P, and where 

The integrand of I vanishes at B = On and at 8 = 7~ - O s  (subscripts for 

"0-north" and "8-south"); because the perturbed field is not necessarily s p -  

metric, en and es will in general be unequal, and may depend on (P. 

The second integral in the numerator is Io  ( a ,  B,), already defined in 

Eq. (23). It should be noted that here its first argument is a ,  not a. as in 

Eq. (23), so that 0,  is defined by Bo ( a ,  e,), - not Bo ( ao, e,), being equal to Bm. 

The two integrals represent two functions I ( a ,  p, B,) and Io ( a ,  B,) that 

differ only slightly, and it is therefore natural to t ry  to expand I ,  in some way, 

around I o ;  when such an expansion is then substituted in the enumerator, its 

zero-order terms cancel , leaving the first-order difference explicitely stated. 

In what follows the procedure for such an expansion, which is somewhat tricky, 

will be derived; the actual calculation, which is merely tedious, will not be 

given. 
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Three factors have to be considered in deriving the difference between 1 and 

Io. First of all, there is the difference in limits of integration: this will be dealt 

with later. Secondly, I contains the perturbed variables B and y, whereas only 

their dipole components Bo and yo appear in Io. Finally, the form in which B 

andy are available is as  functions of the spatial coordinates ( r ,  e ,  0). By means 

of Eqs. (5) and (7), this dependence is easily transformed into a dependence on 

(ao, Po, e ) ,  but since it is a and p, not a0 and Po, that stay constant during inte- 

gration, one has then to substitute in the above dependence 

- 
a. - a - a1 

Po = P - P, 

and expand, thus expressing the variables in terms of (a, p, e) .  Because the cal- 

culation is to be accurate only to the first order of perturbation, the substitution 

(31) is only required in zero-order terms, while in first-order terms the dif- 
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For convenience, we introduce a special notation for the first-order component 

(33) A B ( ~ , , B ,  e )  = - al(aBo/aa) + B,(Q, e ) .  

Similarly, from the dipole relation 

ro + A r .  - - 

(34) 

(3 5) 

Finally, denoting for brevity 

one finds 

where 

For reasons which will become clear later,it is advisable to leave the difference 

arising from the square root terms for separate consideration. Expansion of all 

other terms to the first order yields 
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Let u s  write 

- (Bo + AB)/Bm}" X, dB 
v-e, 

(3 9 )  
ern - ( 1  - Bo/Bm)" X, dB t A I , .  L- em 

The quantity A I ,  is of the first order and may therefore be evaluated, to the 

present order of approximation, between the limits Om and T O m .  Making other 

allowable approximations, and replacing (a, p )  by (a,, p,)  during integration, 

we get 

AB 2Ar  
A I ,  - t - - ")X, de. 

BO TO 

A t  the corresponding point in Pennington's calculation, the square root in 

the first part of (39) was expanded by the binomial theorem: 

In addition, the difference between the limits of the two integrals in (39) was 

ignored, leading to 
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Actually the binomial expansion is divergent when ( Bm - Bo) is less than AB 

and as a result, the integrand in (42) has a singularity at its limits, where the 

quantity it tries to approximate really tends to zero. The singularity is inte- 

grable, however, and it is shown in the appendix that Eq. (42) i s  in fact correct 

to the first order in E. 

The explicit derivation of (I  - I,) from here on will not be described: as 

was noted before, it is lengthy, though not too difficult. Since the first order 

quantities AB, Ar and A r all involve a, o r  y ,  in a linear fashion, the final ex- 

pressions for ( I - I, ), and consequently also for C, , split up into a sum of terms, 

each of which is proportional to one of the harmonic coefficients gz or h:. The 

calculation of these terms leads to a series of integrals, first given by Pennington 

(1961), which combine to form a set of functions U: (Pennington's notation, re- 

tained here; not related to the Euler potential a) of the mirroring angle Om. The 

functions a: (Om) have been evaluated numerically and tabulated by Pennington 

(1961) and more extensively and accurately by Stern (1965); using them one gets 

m= n 

(43) 

(gz  cos m cp + hz sin m (P} . 

Combining this with Eqs. (4), (5) and (19) gives the shell's first-order equation 

as 
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m = n  (44 ) 

It should be noted that the integration constants e: cancel out in the final 

result, This was to be expected, since in characterizing drift shells, as in Eq.(9) 

and the ones following it, the only requirement for u and p was that they be con- 

served along field lines, and it was not necessary that they "match" (Stern, 1967). 

THE I = 0 LIMIT 

One may test Eq. (44) by considering the limit I = 0, for which the shape of 

a drift shell (which then contracts to a line) may be separately derived from first 

principles. Such a test also checks whether the ratio of expanded integrals tends 

to the correct limit when the integration ranges become very short. 

In a dipole field, shells with I = 0 describe particles confined to the equa- 

torial plane. Since (aL) then equals their (constant) distance from the dipole, one 

finds in that case the limit of the function L (I, B,) as  

L ( 0 ,  Bm) = (gy/Bm)1'3. (45) 

Substituting this into (44) and inserting there 77/2 for the mirror  angle Om gives 

the first-order equation of the (0, Bm) shell, by the present perturbation scheme, 

as 
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t 6gy z ( ~ , / a g y ) ~ ~ ~  (6; - U ; ( T / ~ ) }  (gzcosmcp t hz s inmcp).  

For an alternative derivation of the shell's equation, we note that a particle 

with I = 0 will always be located at points at which the field intensity is B,. 

This gives to first order the condition 

where 

F(8)  = (1 t 3 cos' 6) sin-12 e 

To obtain the shell's equation, one would now have to eliminate 8, using the addi- 

tional condition that the position of the particle on any field line corresponds to 

the minimum of B there. However, it is sufficient to assume that the angle 
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A = 77/2 - e 

between the particle's location and the equatorial plane, is of the first order in 

smallness. With this assumption one may substitute 

e = 

F ( 8 )  = 1 

not only in first order terms but also in zero-order ones, since 

aF/aOI,,/, = 0 

and thus 

F(8)  = F(77/2) t 0 ( e 2 ) .  

Comparing then (48) with (47) gives 

from which one finds the requirement 

which indeed is met by the functions u: (Stern, 1965, last equation). 
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APPENDIX 

PROOF OF EQUATION (42) 

Let the integration region be divided at 0 = 77/2, and consider the contribu- 

tion to the first two terms in (39) from angles 0 smaller than this value 

I” H 
A I n  = [!I - (Bo f AB/Bm)] X, dB - (1 - B0/Bm)’ X, d e .  (A-1) 

77/2 

Defining a constant A@, which may be of either sign 

one changes variables in the first part of (39) to 

$ = B - A@. 

(A-2) 

giving, to the same order 
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[en[l - (Bo t AB)/BdH X, d 8  = 

+ Jem (1 - [Bo t AB + At9 (aBo/a$)]/Bm 
r / 2  

04-3) 

The square root appearing in the last integral may be written 

Unlike in the case of Eq. (41), the second factor here may be expanded, for the 

ratio contained in it is less than unity at all points at which the integrand of (A-3) 

- 

is real. There exists no problem at the end of the integration range, for - both 

numerator and denominator vanish there. One may therefore write (reinstating 

0 as integration variable) 

However, integration by parts shows that all terms involving A 8  cancel. 

similar cancellation occurs in the remaining half of the integration range, and 

the only terms left are those in (42). 

A 
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Figure 1 schematically illustrates the meaning of the preceding result. 

Graphs (1) and (2) give the integrands appearing in equation (A-1), and the curve 

bounding the hatched area describes their difference. Graph (3) describes the 
I .  

binomial approximation to this curve as used in Eq. (42), an approximation which 

evidently breaks down near 9 = Om. In spite of this breakdown, the use of the 

approximation in evaluating integrals leads to  correct results, because the area 

between graph (3) and the two orthogonal axes shown in the figure equals (to the 

order of approximation) the hatched area beneath the curve. 
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